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)

A variety of noise cleaning techniques are |
compared on two test pictures. All of the techniques |
tested are based on local analysis of a small neigh- |
borhood of each pixel. They include median and mode |
filtering: selective local averaging or weighted |
averaging schemes of various sorts; and Kalman filter- |
ing. Iterated weighted averaqging and iterated median |
filtering were judged to give the bkest overall per- !
formance. ‘
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1. Introduction

Many types of noise can be present in a picture [1].
Each type interacts with the original image in a different
way. For example, additive noise, such as channel noise,
may be uncorrelated from point to point and independent of
the picture signal. The picture can then be represented by
g = f+v, where f is the input picture and v is the noise.
Uncorrelated, multiplicative noise, such as the noise pre-
sent in a picture scanned by a flying spot scanner, is
another type. If this noise 1s proportional to the signal,
it can be expressed as g = f+vlf=(l+v1)f = fv.

Film grain noise is an example of noise which is depen-
dent on the gray levels of the point in question and those
of nearby points. Both additive and multiplicative noise
may be present.

The noise v itself can be statistically characterized in
various ways. A common assumption is that it is Gaussian,
i.e. that its probability density has the form

IS Y PR RVP R
V2no

where u is the mean noise value (often assumed to be zero)
and o is the noise standard deviation. This paper deals
primarily with additive Gaussian noise.

Many different noise cleaning methods have been proposed.

Most of them operate in the space domain, and are based on
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comparison of the gray level of cach pixel with the gray
levels of the pixels in its neighborhoods. These compari-
sons can usually be carried out in parallel (i.e¢., indepen-
dently) for all pixels, though they may also be iterated
[2,3]. A variety of such methods are implemented and
compared in this paper. For comparison, a classical sequen-
tial method, Kalman filtering, was also implemented. 1t
this method, the computations for the individual pixels arve
not independent, but are done in a fixed sequence, so that
the gray level correction for a given pixel depends on those
already computed for previously examined pixels.

The methods were applied to the two noisy pictures in
Figure 1. Figure la 1is a 128x128 image of an octagon of
gray level 33 (on a 0-63 scale) on a background of gray level
28. Figure lc is a 127x127 image of a section of a LANDSAT
IR band of California (displayed as a negative). Gaussian
noise was added to Figures la and 1¢ to obtain Figures 1b

(u=0, o=5) and 1d (u=0, o0=8).




2. Methods and results

With the exception of the Kalman filter, all methods
implemented operated on a 3x3 neighborhood centered at a
point P, unless otherwise indicated. The methods in Sections
2.1-2.7 were iterated; those in Sections 2.8-2.9 were not.

In defining the methods, the point P is assumed to be at

(x,y), so that its neighborhood is

(x=1,y+1) (x,y+1) (x+1,y+1)

(x=1,y) (x,y) (x+1,y)

(x=1,y~1) (x,y-1) {x+l,y-1)
The gray level at (u,v) is denoted by f(u,v). The noisy
image is represented by g(m,n) = £(m,n) + v(m,n), where

v(m,n) is the additive Gaussian noise.




2.1. Mode filtering (4]

In this method of noise cleaning, the gray level at a
point P is replaced by the mode (most frequently occurring
value) of the gray levels in an nxn neighborhood of P.

Since the mean noise value is zero, the expected value
of the noisy picture is the same as that of the original
picture:

E{g(i,j)} = E{f(i,j)+v(i,j))

1l

E{f(i,j)} + E{v(i,j)}

E{£(i,])}

i

Hence, if the original picture is approximately constant in
the neighborhood of P, the most common value occurring in the

noisy picture should be that constant value. Thus, one can

expect that mode filtering will remove the noise present in
the test pictures. However, with this method, edge points
(where the original gray level 1s not approximately constant)
will often be misclassified, causing edges to be blurred.

The results of four iterations of mode filtering are
shown in Figure 2. Both images have a blotchy appearance

and edges are .ot preserved. In this case, the image worsened

with each iteration.




2.2. Median filtering ([5,6])

This method replaces the gray level at a point P by the
median of the gray levels in an nxn neighborhood of P. Median
filtering, like mode filtering, is good for smoothing out
noise because it rejects extreme values. It also does not
blur sharp edges. This can be shown by considering a one
dimensional example. Suppose the given sequence of values is

vee00,0,0,0,1,0,0,0,...

Applying mean filtering over a 1x3 neighborhood yields
cee00,0,3,5.3.0,...

whereas applying median filtering gives
«e,0,0,0,0,0,0,...

Similarly, for the input sequence

«es,0,0,0,0,1,1,1,1,..
mean filtering gives

R % B % R
while median filtering gives

-ou,0,0'O'l'l'l,..-

These effects are shown schematically in the following diagram:

Original _,_ﬁukm___. .__J
Mean —"///\_ /

Median m_uj




Four iterations of this method are shown in Figure 3.
The first iteration of the octagon seems to be the most pleasing,
although it is mottled. The image becomes smoother with each
successive iteration, but the edges seem somewhat more blurred.

By contrast, the LANDSAT image improves with each iteration.
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In this class of methods, the gray level at a point P 1is
replaced by the average aray level of those k neighbors (in
an nxn neighborhood of P) whose gray levels are closest to
that of P. It the non-noisy gray levels are zl,...,zk, and
the noise levels at these points are wl,...,wk, then the
1/k + [w

average l(.‘ln\'l)f...i-(r +w,)1/k = [2,+...+2 +...tw

k Kk e k 1

] '’k can be regarded as a sample of a random

)
where lw1+ AT é-wk
variable with mean 0 and standard deviation “/vk [1). This
averaging reduces the amplitude ot the noise fluctuations.
Thus, the i1mage should become smoother, although possibly
more blurred, with each i1teration.

Values of K were chosen to be 2,4,6,8. E° 1s just an

: : 3 E 2
averaging of all the points surrounding P. E™ should preserve

lines and edges the best as, in theory, the two points along

the same line or edge as P should have gray levels closest
to that of P. EY should preserve edges fairly well; for a
straight cdge, tive of P's neighbors should be on the same
N : . SO . 8 . "
side of the edge as P. E° and E° will both blur edges. In
addition, they will cause sharp protuberances in a region
to disappear.

Four iterations for cach value of k are shown in Figure
4. The results are similar to those found in [3]. E

i o i s 3 3 3 4

preserved edges but did little noise cleaning. E removed
more noise than Ez, but less than EP. Edges are somewhat more
jaagged for E4, but Eb begins to blur the image after two

iterations.

K,




2.4. Gradient smoothing [1,3]

The gray level at a point P is replaced by the average
of the neighbors (in an nxn neighborhood of P) which have
lower gradient values. The Roberts approximation to the
digital gradient was implemented. It is computed using
max (|g(i,3j)-g(i+l,i+1) |, |g(i+l,3)-g(i,j+1)]).

The gradient serves as a measure of the differences in
gray levels between neighboring points. In regions where
the gray levels are similar, the gradient values will all be
small, so that gradient smoothing will replace the gray level
at P with the average gray level of a randomly chosen set of
neighbors. On the other hand, at an edge, gradient values

will be lower for neighbors that are farther away from the

edge, i.e. that are interior to the region to which P
belongs, so that P will usually be replaced by the average
of these neighbors.

Results of four iterations of gradient smoothing are
shown in Figure 5. Iteration produced smoother pictures,

but somewhat blurred the edges.
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2.5. Selective Averaging (1]

Three variations of this type of method were implemented.
One variation consists of replacing the gray level at a
point P by the average of its eight neighbors only if it
differs from at least six ot its neighbors by a given threshold
value. Threshold values of t = 2,3 were used for the octagon
where 0 = 5 and t = 3,4,5 for the LANDSAT image where o = 8.
These values were chosen to be roughly the same fractions of
the respective standard deviations. The results are shown
in Figure 6a. As expected, smaller t's yield greater smoothing,
and in all cases the images become somewhat blurred or
ragged.

A second variation computes the absolute differences

d, and d, where

1 2
d; = |[(gli=-1,j+1)+g(i,j+1)+g(i+l,j+1)] -
[g(i-1,j=1)+g(i,j-1)+g(i+1,3-1)1]/3
and
d, = |[g(i-1,3+1)+g(i-1,3)+g(i-1,3-1)]) -

o

[g(i+l,j+1)+g(i+l,]j)+g(i+1,j-1)]1]|/3

If the larger of these absolute differences is greater than
a given threshold t, dy = max(dl,d2)>t, the point P is
replaced by the average of the two neighbors in the direction

1

tan~ (d1 d,), which is perpendicular to the direction of

greatest .ange. Directions are rounded to the nearest 45°.

SPPEE, SPEgE.




If dm>t, P is replaced by the average of its eight neighbors.
Figure 6b shows four iterations for t = 2,3,4,5. Iterating
smoothed the pictures quite well, but the pictures also
became more blurred. The results are quite similar for all
four t's.

A third variation uses tour differences. In addition to

the previously mentioned d; and d», the followina are also

calculated:
dy = [lg(i-1,3+1)+g(i,3+D+g(i-1,3)) -
[g(i+1,9)+g(i,j-D)+g(i+1,3j-1)1]/3
and
dy = [[g(i,3+1)+g(i+],j+1)+g(i+l, )] -

fg(i-1,3)+g(i-1,3-1)+g(i,j-1)1|/3

The difference range in the neighborhood of P is calculated

to be the absolute difference between the minimum and maximum
of *hese four absolute differences. If this range exceeds a
given threshold, t, P is replaced by the average of the two
neighbors in the direction of the minimum absolute difference.
Otherwise, P is replaced by the average of its eight neighbors.
Four iterations tor t = 2,3,4,5 are shown in Figure 6c.
Results are better than those of the second variation, and

are ratheyr similar for all four t's. In the LANDSAT imrage,

the edges become somewhat jagged or "furry".
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2.6. Maximum homogeneity smoothing [7]

The gray level at a point P is replaced by the average
‘ gray level of the most homogeneous neighborhood from among
the five 4x4 square neighborhoods surrounding P, as illu-

strated below:

2 3
P
+———
1
4 5

To determine the most homogeneous neighborhood, the noisy

image g(m,n) is first blurred by averaging over an nxn

neighborhood of each point to obtain b(m,n). Non-homogeneity
indexes are computed for five 2nx2n neighborhoods with centers
at b(i,j), b(i+n,j+n), b(i-n,j+n), b(i-n,j-n) and b(i+n,j-n),
using the formula
| (b (p+3,9+3) + b(p-7.,a+3)] - |
[b(p+%,q-%) + b(p—%,q—%)]l
+ | [b(p+3,a+3) + b(p+z,a-3)1 -

[b(p—%,q+%) + b(p-ﬂ. -%)]I

|
where (p,q) represents the center of the neighborhood. 1In {
the examples, n = 2. The neighborhood for which this index 1
is lowest is taken to be the most homogeneous neighborhood

of P.




The results of four iterations are shown in Figure 7.
Since the initial averaging weakens the noise, and averaging
over the most homogeneous area further smooths the image,
both pictures are very clean. However, edges are jagged
and the LANDSAT image is very blocky. (The sharp appear-
ance of the right and bottom edges of the third and fourth
iterations is not due to the method; it is the result of
replacing undefined edge points by corresponding points in
the uncorrupted picture.) To see why, note that, for each
cedge point on the octagon, there will be at least one area
which falls completely within the background and one which
falls completely within the object. On a diagonal edge,
areas 2 and 5 or 3 and 4 will have small non-homogeneity
indexes. Thus the area over which the average is taken
will vary, causing roughness in the edges.

In (7], the authors caution that this method assumes
smooth boundaries between regions so that complexly-shaped
boundaries may give erroneous results. This seems to be true
in the LANDSAT image. Small features have disappeared; the
narrow spaces between the larger features are also gone.

The results also appear very blocky. Because any one neigh-
borhood will be likely to cover more than one type of region,
due to the amount of detail in the image, the most homogen-
eous region will be "random," at least the first time (see

the first iteration). After this picture is blurred, the




regions within the areas should be a little more homogeneous

than before. Additional iterations cause "false" regions

to be built.
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2.7. Neighbor-weighting [8]

In this method, the gray level at a point P is replaced
by a weighted average of its neighbors in an nxn neighborhood
of P. Two types of weights were used: line-sensitive weights
and contrast-sensitive weights.

Consider the neighborhood A of P. An edge or line can
pass through A in twelve simple ways (see Figure 8). Cor-
responding to these twelve ideal Ai's, 1=i=12, are twelve
weight matrices, Di’ shown in Figure 9. Rarely will A match
any of the Ai's exactly. More often, A will be a combination
of several Ai's. If, in addition, A is noisy, then even if

A = A,

i the corresponding Di may not be the correct one,

since the match may be due to the noise. Instead, coefficients
Wi which measure how closely A matches A should be cal-
culated so that the weight matrix has the form

The wi's are calculated as follows: let S be the sum of all
nine gray levels in A, let Sj be the sum of the three gray
levels of the points in A which have the same positions as
the a's in Aj’ and let Oj = JSj-S. I1f A is one of the Ai's,

we have

6 (a=b)

Oj(Ai) 3(a-b) if Ai and Aj are both edges and have
adjacent slopes

Oj(Ai)so, otherwise (assuming a>b)

T A e A —————




This means that Oj(A) is large if A closely resembles Aj.
The wi's can then be defined by
w, = o.L+/>:oj+
where oj+ = oj if oj;~0, and 0 if ojxo. Only those Oi(Aj)'s
for which Aj resembles A influence W, If all the Oi's have
equal magnitude, the new point is just the average of all
the nine points in the neighborhood. Note that the values
of the wi's are not affected by the gray levels of the points
in the neighborhood.
The contrast-sensitive weights are based on evaluating
the difference (or similarity) between a point and its im-
mediate neighborhood. This similarity measure can detect the
existence of local edges and lines and is sensitive to the
gray level differences (contrasts) involved.
Let the neighborhood A contain the gray levels

abc

def

ghi
where e is the gray level of P. For direction 0° define

a o

= [ G ¢

D
Y B B B

where a = exp(-| (a+b+c)-(d+e+f) |/0);
B = exp(-|(g+h+i)=-(d+e+f)|/0). For the examples in Figure
10, o = 5. Similarly, Di's are defined for directions

45°, 90° and 135°:

ki i




¥ ¥ L i 1l nn
Dl =1Y1l§§ 02 =]le l¢g and D4 =16 1 n
1686 i 0 6 1

where
Y = exp(-| (a+b+d) - (ct+e+q) | /o),

§ = exp(-| (f+h+i) - (cte+qg) | /o),

€ = exp(-| (a+d+g) - (b+e+h) | /o), 1

¢ = exp(-| (c+f+i)-(b+e+h)|/0),
n = exp(-| (b+c+f)-(ate+i) | /o),
0 = exp(-| (d+g+h) - (ate+i) |/0).
The product of the Di' taken elementwise, is

aYe a¥Yn abn
Ye© 1 §in
BeO B8O BS8G

The final weight matrix D is obtained by normalizing this
product to make the center term 1/9, and to make the sum of ’
all terms equal to 1. This product rule was chosen because
any coefficient set to a very small value will cause that
point to contribute very little to the next estimate for P.
This corresponds to the behavior of one of the D, in the
presence of a very strong edge or line. It also prevents
the additive accumulation of the small responses from the

rotated D which occur in noisy situations.

S e

Results of applying four iterations of the first method

are shown in Figure 10a and corresponding results for the 1

second method in Figure 10b. Method 1 seems to perform better
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than method 2 on both pictures; the LANDSAT pPicture acquires

a blotchy appearance under method 2.




2.8. Weighted averaging [9])

A blurred image, b(m,n) is computed by averaging g(m,n)
over a 3x3 neighborhood. Next, a difference image d(m,n) =
g(m,n)-b(m,n) is computed. Both b(m,n) and d(m,n) are then
divided into corresponding sections of 4x4 pixels. To
achieve overlapping of sections which the author of (9] has
found to give more pleasing images, the 4x4 sections of
d(m,n) are expanded to include two additional layers of
pixels on each side yielding overlapping 8x8 square sections.

A variance ogk is computed for each 8x8 section of d(m,n).
The noise variances are oi = 25 for the octagon and oi = 64
for the LANDSAT image. For each 4x4 section Ok is defined by
8y = minimum{1.0, uﬁ/oDi}
A new image %(m,n) is computed in 4x4 sections, where each

point of the kth section is found by

£(i,3) = 0,b(i,3)+(1-0,)q(i,3)

When tested against og, 002 is a measure of the signal
k
activity in the kth section of the picture. If oozsoi, the
k

original picture is assumed to have low signal activity and

the kth section of the blurred image is assumed to be an

adequate representation of the original. If 0D2>o:, the
k

signal is assumed to have high activity and a weighted

average, as defined above, is computed for the kth section.

(A related method is proposed in [10]; however, it is more a




technique for detection of small, low-contrast objects in
an image than for image smoothing.)
The blurred and smoothed images are shown in Figure 11.

Little difference can be seen between the two.
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2.9. Kalman filtering [1])

This method is included as a basic example of a
sequential method. Several refinements of the Kalman
filtering technique exist (e.g., [10,11]}), but this version
was implemented because of its simplicity. The three im-
mediate neighbors on the left and above, as well as the
point itself, are used in the estimation of the new value
of the point:

£(m,n) = (i.gi)@dm’n(i,j);(m—i,n+j)+nm‘n9(m,n)
where D = {(0,1),(1,1),(1,0)}. For each (m,n), dm,n(i'j)'
(1,j) €D and T the four coefficients of the filter.
The method used in computing these coefficients is describea
in the following paragraphs.

The autocorrelation function of the ensemble to which the
image belongs is assumed to be of the form

Ree(a, 8) = Reg(0,00p, %hs 181
where Py ™ e 1 and Py ™ e ©2 are measures of the horizontal
and vertical correlations respectively. oh and p,, are
approximated by first calculating

Rff(a.B) = :g: (£;+?(k,£)g(k+a,t-ﬂ)
for a=0, B =1,2,3 and a = 1,2,3, B = 0. After dividing
the results by Rff(0,0), a least squares adjustment is done

to obtain °h and Py

1
!
J




Normally, a large amount of computation would be required
to determine nm,n' However, this quantity has been found to
attain practically constant value only a few points away
from the edges of a picture. This implementation assumes that

edge points are noise free and, rather than calculating i P

n
’
various constant values n between 0 and .6 are used.

The remaining coefficients are calculated using

dy o3 = ¢

x,j(l-n)' (i,3) €D

where Cl,O = Ppe CO,l = Py and Cl’1=-ohov .

As mentioned in (11], the mean of the image is sub-
tracted from each point. All operations are performed on
this zero mean picture; the mean is added back at the end.

This method also has a directional bias, so filtering is

first done from top to bottom, left to right, then from bottom
to top, right to left. The results are averaged and this

averaged value becomes the wvalue at P.

Results for n = .1,.2,.3,.4,.5,.6 are shown in Figure 12.
g e , i

The values of o_ and 5, were .3754 and .9754 for the octagon
Y {
and .9173 and .9269 for the LANDSAT image. The pictures have |

The images seem to be smoother, but more blurred, for

smaller n's.




3. Comparative discussion and conclusions

Although general conclusions cannot be drawn on the basis
of so few examples, a few tentative observations can be made.
The following methods were judged to perform more poorly
than the others:
1) Mode filtering (Section 2.1) produced strong
mottle
2) Maximum homogeneity (Section 2.6) produced
blocky output
3) Neighbor-weighting, second method (Section 2.7)
made the LANDSAT image blotchy
4) Kalman filtering (Section 2.9) produced a
periodic "cheesecloth" pattern
Note that the last two of these methods were not iterated.
Among the remaining methods, the best results on the
LANDSAT image seem to be those obtained by median filtering
(Section 2.1), gradient smoothing (Section 2.4), and the first
neighbor~weighting method; the last of these also yielded the
least mottled octagon. Among the Ek methods (Section 2.3),

5 somewhat too blurry. For the

E4 was somewhat too noisy and E
selective averaging methods (Section 2.5), the first yielded
noisier results than the other methods mentioned in this
paragraph; the third yielded good results (and less blurry than
those of the second), but both introduced "furriness" into

the edges. In all of the selective averaging methods, the

choice of the threshold t, over the ranges considered, did not

appear to be highly significant.

I ———————————

22

R e e e s il




Although iteration tended to improve most of the results,
the point at which blurring effects became dominant could
not be determined beforehand. In the case of some of the
methods, specifically, Ek and neighbor weighting, considerable
computer time would be saved if this information were avail-
able.

The evaluation of these results was very subjective. One
possible way of obtaining a more effective evaluation might
be to ask a number of people to evaluate the results accord-
ing to a set of written instructions. These results could
then be tabulated and analyzed. 1In addition, these methods

could be applied to a wider variety of pictures. The perfor-

mance of more advanced methods such as [11-16] could also

be studied.

o S,
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Figure 3.

Mode Filtering

Median Filtering




Q
- a

Figure 4. I




Figure 4. continued
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Figure 5. Gradient Smoothing

(a)

Figure 6. Selective Averaging

a) Variation 1 b) Variation 2 c) Variation 3
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Figure 6b. continued



Figure 6c



Figure 6c.

continued




Figure 7. Maximum Homogeneity Smoothing
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Figure 10. Neighbor-Weighting

a) Method 1 b) Method 2




Figure 11.

Weighted AvVeraging

Figure 12. Kalman Filtering n = 0.1
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